An abandoned mine in Finland is set to be transformed into a giant battery to store renewable energy during periods of excess production.

The Pyhäsalmi Mine, roughly 450 kilometres north of Helsinki, is Europe’s deepest zinc and copper mine and holds the potential to store up to 2 MW of energy within its 1,400-metre-deep shafts.

The disused mine will be fitted with a gravity battery, which uses excess energy from renewable sources like solar and wind in order to lift a heavy weight. During periods of low production, the weight is released and used to power a turbine as it drops.

  • tunetardis@lemmy.ca
    link
    fedilink
    arrow-up
    3
    ·
    8 months ago

    holds the potential to store up to 2 MW of energy

    2nd paragraph and he’s already lost me. It would be nice if tech columnists had the equivalent of even a single semester of high school physics.

      • dkt@lemmy.ml
        link
        fedilink
        arrow-up
        0
        ·
        8 months ago

        Or just joules per second for power. Eliminate watts entirely. Dumbass unit

        • pcouy@lemmy.pierre-couy.fr
          link
          fedilink
          arrow-up
          0
          ·
          8 months ago

          Well, Watts are just a different way to write Joules per second. The unit we should eliminate is {k,M}W.h which introduce a 3.6 factor in conversions to/from the regular unit system

          • dkt@lemmy.ml
            link
            fedilink
            arrow-up
            0
            ·
            8 months ago

            Yeah but if we all wrote “joules per second” instead of watts we’d encourage everyone to measure energy in joules instead of watt-hours. It’s like speed, we don’t need an entirely separate unit that just means m/s

            • sugar_in_your_tea@sh.itjust.works
              link
              fedilink
              arrow-up
              1
              ·
              8 months ago

              It’s especially confusing when trying to size a surge protector. The surge protector uses joules, whereas most devices use watts, and you generally need more protection the more power your devices pull.

    • ISometimesAdmin@the.coolest.zone
      link
      fedilink
      arrow-up
      0
      ·
      8 months ago

      I googled Pyhäsalmi Mine gravitricity "2 MW" and EVERY article covering this has also cited 2 MW.

      Now, under Occam’s Razor, what’s more likely:

      1. Absolutely none of the article writers have any clue what the difference between a MW and a MWh is because none of them remember any physics
      2. Some of them could suspect that it’s wrong, but an authoritative source of the claim wrote/said 2 MW capacity when they meant “2 MW peak generation” or “2 MWh storage” (I’d presume Gravitricity, but I’m struggling to find such a source, myself)
      3. One writer miswrote/misquoted as per 2, and everyone is mindlessly recycling that original article’s contents with no attribution or care.

      I don’t know which one it is. But I’d generally lean against 1.

      • tunetardis@lemmy.ca
        link
        fedilink
        arrow-up
        0
        ·
        8 months ago

        #2 is certainly food for thought. So the idea is that from a journalistic fact-checking point of view, it is more important to convey the information exactly as it was presented than to verify its accuracy?

        This would explain why science/engineering-based articles are so commonly inaccurate or missing in critical details. The journalist can fall back on saying “I have a recording of an interview with the expert after we downed a few pints at the pub, and I’m just parroting back what he said. Don’t shoot the messenger!”

        • ISometimesAdmin@the.coolest.zone
          link
          fedilink
          arrow-up
          0
          ·
          8 months ago

          I’d honestly prefer raw parroting in most cases, even if it’s “obviously” wrong. I don’t want people selectively interpreting the facts as have been conveyed to them, unless they’re prepared to do a proper peer review.

          • nilloc@discuss.tchncs.de
            link
            fedilink
            English
            arrow-up
            0
            ·
            edit-2
            8 months ago

            That’s what [sic] is for though. You fact check, and then leave the quote as the press release had it.

            The problem is that most of these articles are basically reprinting of the press release without any editorial additions at all.

            • TwoCubed@feddit.de
              link
              fedilink
              arrow-up
              1
              ·
              8 months ago

              I’d wager they let bots crawl articles and have said ai bots rewrite them slightly. Internet journalism is completely lost.

  • wewbull@feddit.uk
    link
    fedilink
    English
    arrow-up
    0
    ·
    8 months ago

    2MW is a measure of power, not energy.

    Time for something to free fall 1.4km is about 17s, so the minimum capacity is 34MJ or 9.4kWh in order to make their statements true. $1.50 in electricity.

    • laughterlaughter@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      8 months ago

      The weight doesn’t have to “free fall” for this to work. It could be a huge boulder that’s lifted a few centimeters per hour. And then it can be dropped a few centimeters per hour when needed.

      • wewbull@feddit.uk
        link
        fedilink
        English
        arrow-up
        0
        ·
        edit-2
        8 months ago

        Run the numbers.

        How heavy a boulder? 10,000kg?

        Potential energy is mass x height, so 10,000kg x 1,400m which is 14MJ of energy. Sounds like a lot, right?

        One Joule is a watt flowing for a second and 1,000 watts flowing for 3,600 seconds is 1kWh. 3,600,000 Joules or 3.6MJ. So our 10 ton rock up a 1.4km shaft only stores 4kWhs? 60¢ of electricity?

        Everything is linear here, so even having a 100 ton rock will only get us to half a EV battery.

        Edit: if you’re wondering where the other 90 cents went, this example won’t produce two megawatts. It would only produce about 700 kilowatts.

        • laughterlaughter@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          8 months ago

          Thanks for doing the math and for expanding.

          The way I see it is: if I gather all the electricity I use to power my appliances in a week and just for one home - my home (fridge, heat, washing machines, vacuum cleaner, lightbulbs, laptop), and use it to lift that rock, how high will that rock get?

          Also, I wasn’t even picturing a rock that small (10,000 kgs in water can be stored half a bedroom of a midsized apartment. Let’s just assume that it would take about the same volume in “rock.”) I was picturing a rock that’s 10m by 10m by 100m tall. More like 10,000,000 kgs.