• StereoTypo@beehaw.org
    link
    fedilink
    arrow-up
    0
    ·
    7 months ago

    “It is chemically, mechanically and thermally robust and can be patterned and seamlessly connected to semimetallic epigraphene using conventional semiconductor fabrication techniques.”

    Sounds promising.

    Can someone explain the implications of the bandgap and room temperature mobility values for future chip designs?

    • OmnipotentEntity@beehaw.org
      link
      fedilink
      arrow-up
      0
      ·
      7 months ago

      My possibly wrong, not researched, and half remembered from college first impressions are: the band gap is lower than Silicon, so it might not be appropriate in room temperature applications/very small gate sizes due to dark current. But the mobility is very high, meaning lower voltage gates might be possible, or higher switching speed/lower latency gates.

      • jarfil@beehaw.org
        link
        fedilink
        arrow-up
        0
        ·
        edit-2
        7 months ago

        Half the band gap of silicon, 10 times the mobility, at room temperature… sounds like it would be able to switch up to 20 times faster in the same conditions.

        I can’t read the full paper, but what I’d wonder is how those values change with temperature:

        (https://www.researchgate.net/figure/Energy-band-gap-temperature-dependence-of-GaAs-Si-and-Ge_fig1_305731183)

        0.6eV at 300K is similar to Germanium, which has slightly lower mobility but has been successfully used in semiconductors. If graphene has a better dimensional stability (as in, doesn’t grow random dendrites over time), then it could be a decent improvement.

        • skillissuer@discuss.tchncs.de
          link
          fedilink
          arrow-up
          0
          ·
          7 months ago

          wait, last time i’ve checked if you want fast switching, faster than silicon can get you, you use GaN, and it has 3.4eV band gap. how does it work?